PARTIAL EIGENVALUES PROBLEM IN THE
ANALYSIS OF HYDRODYNAMIC STABILITY
DURING NATURAL CONVECTION

E. A. Romashko UDC 536.252

A numerical method is outlined by which the first few eigenvalues in the spectrum of finite-
difference approximation equations can be determined for the case of small perturbations in
problems concerning natural convection in a homogeneous incompressible fluid.

In analyzing the hydrodynamic stability during heat convection, when the flow mode (monotonic or
oscillatory instability) is to be established and when the critical value of the Rayleigh number is to be de-
termined together with the corresponding wave number, it suffices to find the first few eigenvalues of the
problem in the parameter A, if the solution is assumed to be an exponential function of time exp (A7). The
Bubnov—Galerkin method, which is commonly used for this purpose, runs into certain difficulties in a
number of cases (for example, in the problem of natural convection in a semiinfinite medium with a uni-
form injection).

In this article the author proposes a numerical method of solving such problems. The first few
eigenvalues of a problem are determined by the fully stabilizing step-by-step power method [4]. The
stabilization method in [5] is used for finding the eigenvectors of the problem directly from the finife-
differences approximations to the system of transient equations for small perturbations.

We will consider the general case of natural convection and a transverse flow in a homogeneous
liquid. In order to evaluate the effectiveness of this method, it was applied to several problems whose
solutions had already been obtained earlier by other methods [1-3].

1. We consider a horizontally infinite plane layer of an incompressible homogeneous fluid. The
vertical Z-axis will originate at the lower boundary of the liquid layer. A uniform injection (or ejection)
at a velocity w, will be assumed to occur through the unequally heated boundary surfaces of this layer. If
the liquid layer has no upper boundary, then we stipulate a temperature of the liquid at infinity.

The system of equations for the amplitudes of small temperature ®(r, z) perturbations and velocity
w (7, z). (Z-component) perturbations, assuming the solution to be periodic in the horizontal plane, will be
written as follows (with the wave number M): '
A Do + Do —RM*0 =0,
ot
0 ,
Pr — 0—D,0-+Too=0
ot

for w = 8w/9z = 0 at z = 0, 1 and with the corresponding boundary conditious for @.

The quantities in system (1) are dimensionless. As the characteristic units we choose H, AT, a/H,
and H%/v for the length, the temperature, the velocity, and time, respectively.

The gradient T('](z) of an unperturbed temperature distribution is:
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a) for the Rayleigh problem (o = 0) with boundary conditions of the first kind [1] and of the third kind
[2] for @,

To(z) = —1, (2)
b) for the generalized Rayleigh problem (@ # 0) with a uniform injection (or ejection) [3],

N — 3
To (2) e () exp (— az), 3)

c) for a region without upper boundary and with ejection,
To (2) = —cwexp (—oz). )

We note that the problem cannot be formulated in terms of small perturbations as (1) for a layer
without upper boundary and with either a stationary liquid or a uniform injection through the lower bound-
ary surface, since under either of these conditions there is no steady distribution of unperturbed tem-
perature.

System (1) can be conveniently rewritten in matrix form:

0

AX —B — X =0, (5)
ot
where A and B are matrices of second rank:
1 1
a [?Dl —K ] s_|w2 0 |kl rm .
KTy —KD, 0 —KPr

and X = X(w, ®) is a two-dimensional vector.

If the time~dependence of the vector in Eq. (5) is exponential, exp (A7), then we have the generalized
eigenvalue problem in the parameter A:
AX—ABX =0, (7)

For a symmetric matrix A(T{ = —1) and with sign-definite operators in elements of the matrices A
and B (o = 0), the criteria of orthogonality and normalization for the eigenvectors in problem (7) with
homogeneous boundary conditions are defined as follows:

1
Ny=(X,, BX,) =— 7(? (01, Dw,) - Prk(9;, 8,). (8)

If the approximation u to an eigenvalue of problem (7) has been found by any means whatever, then
the eigenvalue can be found more exactly by the Wielandt method [4]. The gist of this method is to seek-
the smallest eigenvalue n = A—p of the shifted matrix A—puB, where A denotes the exact eigenvalue of the
original problem.

With all this in view, problem (7) of finding an eigenvalue more exactly becomes

(A—pB)X—mBX =0, 9)
and the corresponding Eq. (5) becomes
5]
(A—pB)X—B — X =0. (10)
Jt

2. Tor a numerical determination of the first few eigenvalues of problem (7) by iteration methods,
it is worthwhile to consider the finite-differences approximation to the transient equation (5). If a step
along the time coordinate is denoted by AT and a step along the space coordinate is denoted by h, then the
finite-differences equation corresponding to (5) will be

_.1_ I e ]:_L il g i1
i (BX)i + & (AX): = BX) - (e —1) (AXY]

(1)
(j=1,23 ...;i=0 1,2 ..., N,

where a superscript and a subscript indicate a discrete variation of a given quantity along the time coordi-
nate and along the space coordinate, respectively, N is the number of points on the interval, and the real
parameter € can vary within 0 < g = 1.
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With the aid of Eq. (11) one can use the stabilization method [5] for determining the first eigenvector
(regular solution ~exp (A7)) which corresponds to the largest eigeuvalue. Taking an arbitrary vector X" as
the start, we obtain a discrete in time sequence of values xJ §=1,2,3,...) (analogous to the iteration se-
quence for the matrix of an arbitrary vector in the power method of solving the partial eigenvalues problem
in [4]). M the process of determining X) from Eq. (11) has stabilized, then the first eigenvalue is equal to
the ratio of the respective components of vectors which represent the succeeding and the preceding ap-

proximation (the latter normalized in a definite manner): hp = x%/;{%—l (the dash over the symbol denotes a
normalized quantity). On the other hand, in this case Xj, xi-1 satisfy Eq. (7). Inserting (AX)Ji and (A}—f)ji—1

from (7) into (11) and using operator B! on the left-hand side, we obtain the following relation between

}‘p and A:

3y = 14 (1—e) AAT '

12
\ 1— eAAT (12)

Tnasmuch as the elements of matrix A in (8) contain fourth-order differential operators, some ferms
of the finite-differences equation (11) will contain the factor h?. As a result, in a digital computer designed
for 7-decimal numbers (Minsk-22) some significant digits will be lost.

Therefore, for computer-technical reasons, it will be worthwhile to replace the fourth-order system
(1) by an equivalent system of second-order equations. This is achieved by introducing a new function

¢ (z, T) according to the equation
Do = g. (18)

With this substitution, then, (5), (7) and (9), (10) retain their form and only matrices A, B as well as
vector X are now redefined as

D —1 0 00 0
A=10 D, —K*|, B={g 1 0}, X=X{o, 9 8), (14)
Ty 0 —D, 0 0 —Pr \
while relation (8) for this case becomes
1
1
No=— j (? o9, —PrKe,0, )dz. (15)
0

If in Eq. (11), with A replaced by A—uB, the operators on the space coordinate in elements of the
matrices A aud B in (14) are replaced by symmetric three-point differences, then, after a few transforma-
tions, we obtain the following recurrent equation:

AXbyi+ By X+ G Xloi = 4, XI5 + B, X 4 ¢, X2 "

(j:l7 23 3) PPN izlg 2, 3, N*—I),
where A;, By, C; are matrices of the third rank
o, 0 0 By B O vo 0 0
A=]0 Oy O s Bi=[o0 Bao Bog |’ CGi=1o0 Yoo O |0 - (17)
0 0 oy Bar O By 0 0 7y

and Xj = X(wji, (pjl, @ji) is a three-dimensional vector.

The elements of matrix (17) are defined as follows:

ah (73
Oq1 = Y11 = & Qg5 Ve = & (li _QE‘) ; Oy Vg = —2 (Ii ’2—) )
2

Bus = — B2 FM Bra = — B By — 1 — e [2 (W A5 1)

Pr h?

Boy = —eR2M2R; B,y = eh?® (T0);; Bys= + & [2+4 (M* + Pryp) #]..

Matrices A,, B,, C, are analogous to matrices Ay, By, C;, except that in Egs. (18), which define
their elements, € must be replaced by e—1.

In order to solve problem (16) with the respective boundary conditions we use the sweep method. We
will seek the solution in the form of a recurrence relation
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Xi=P, X 4@, (19)

where the three-dimensional matrices P; and vectors jS (i=1,2,3,..., N~1) are to be determined in the
first stage of the sweep (forward sweep).
The recurrence formulas for Pi’ Q% (i=1,2,3,..., N-1) are
Py= — (B1 + Clpi_1)_1 Av
Q= (B, + CP; )t R —C,Q0), (20)

RI™ = AXI + B, X - ¢, X0

The initial value P, of the matrix and Q% of the vector will be determined from the corresponding
constraint on the left-hand boundary.

From the backward sweep we find X]N according to the recurrence formula (19) from the coustraint
on the right-hand side and from rvelation (19) for point i = N-1.

3. In order to determine the first three eigenvectors and the corresponding eigenvalues, we use the
fully stabilizing step-by-step method [4]. The gist of this method, as applied to our scheme for solving
Eqgs. (16), is as follows.

Let X?, X9, Xg be three arbitrary linearly independent 3(N + 1)-dimensional vectors. We construct
a sequence to the system using three mutually orthogonal vectors XJ, X%, XJ3 G=1,2,3,...) which repre-
sent sequential in time approximations to the initial vectors X?, X, Xg, acecording to the adopted method
of solving the finite-differences equations (16) with the corresponding boundary conditions.

The process of finding the said frequency will be denoted by operator A so that
Xi—AXi?t (i=1,9, 3 j=1,23,..). @n

In order to avoid an increase in the number of components, it is advisable in the calculation by any
one method to assign numbers to the vectors obtained in each step. Orthogonalization and normalization
of the vectors is in our case effected in the generalized sense according to relation (15), with the integra-
tion replaced by a summation over subdivision points i =0, 1, 2,..., N of the interval.

On the basis of the theorem in ([4], p. 384), the sequence to the system of vectors XJ, X%, XJ3 has
the limits X;, Xy, X3 and these limit vectors lie in an invariant subspace which extends over a system of
three eigenvectors corresponding to the first three eigenvalues Apts Ap2s Apsor over a system of one
eigenvector and two root vectors corresponding to equal eigenvalues.

Thus the problem has been reduced to the complete eigenvalue problem in a given three-dimensional
subspace.

As the basis of this system we will choose vectors X, X,, X;. Then
3
A%, = Do Xy (1 =1, 2 3), (22)
m=I

so that the matrix
Oy Ogp Xy
L= oy oy o (23)
Qg1 Pgp CGlgg
is a matrix of the induced operator in the chosen subspace. By virtue of the orthogonality of vectors X;,
Xy, X3, the elements of matrix L are related as follows:

Coppn = (AXm xm) (24)

The sought eigenvalues of problem (16) coincide with the eigenvalues'of matrix L, which have been
denoted by Apn (n =1, 2, 3). Let the corresponding eigenvectors of matrix L be ap = ay(apy, any, dn3).
In the basis X;, X;, X3, then, the coordinates of the eigenvectors of problem (16) U, Uy, U, which cor~
respond to the sought eigenvalues, are equal to the coordinates of the eigenvectors (or one eigenvector
and two root vectors) of matrix L, namely:

3

U= a,, X, (n=1, 2, 3). _ (25)

m=1]



TABLE 1. Parameter R in the Rayleigh Problem, as a Function of
the Wave Number M on the Neutral Line in the Critical Range, for
Various Step Sizes h in the Finite-Differences Schedule

h

— Exact

M N
0,02 i 0,01 0,008(3) 0,00625 0,00(5) \ 0,005 |solution[1}
3,00 1705,9 | 1709,9 | 1710,3 | 1710,7 | 1710,8 | 1710,8 1711,2
3,13 1702,5 1706,5 1706,9 1707,3 1707,5 1707,4 1707,8
3,26 1707,6 1711,4 1712,1 1712,5 1712,6 1712,5 1713,0

Indeed, if in the relation
AU, =1, U, (n=1, 2, 3) (26)

we express the eigenvectors U, (n =1, 2, 3) according to formula (25), then with the aid of relation (22)
we obtain the equality

3 3

E ( a‘lmanm_}“pnanl> X, =0 (n=1, 2, 3),

=1 m=1

and from here, by virtue of vectors X,, X,, X;being linearly independent,

3
Ea,manm = hpnlny (b n=1, 2, 3),

m==]

or
La, =hy,a, (n=1, 2, 3),

indicating that a, is, indeed, the eigenvector of matrix L which corresponds to the eigenvalue Apy (n =1,
2, 3)..

The accuracy with which the eigenvectors are determined by this method can be readily estimated
on the basis of the variance between a succeeding and a preceding iteration. Denoting the vector variance

byzn and its norm by 6p, we obtain the relation

e / txtl = —

Ay =AU —2,,Un, 8, =V (A, A) (n=1, 2, 3), (27)
where the scalar product, as everywhere here, is taken in accordance with expression (15).

The real eigenvalue Ay of problem (7), which corresponds to the eigenvalue Apn (n =1, 2, 3) of the
finite-differences problem, will be determined with the aid of (12).

We note that the speed at which the vectors stabilize by this method depends on the ratio A /.

4. a) For the Rayleigh problem with zero boundary value of velocity, of its first derivative, and of
temperature we determine from (13) the initial values P, Q% for the forward sweep and XJN for the back-
ward sweep:

0 0 07 af=0ai©, 0, 0), Xy=Xk(0, gy, 0),
Po=|om2 0 01, n2 (28)
0 00 Py =GN 1y [_é"—pN-—l(lﬂ 2)] .
For boundary conditions of the third kind {2]
% _ FBi® mpu z=0, 1
0z
we determine the corresponding values P, Q%, and X{\I as follows:
, ‘(’2 ) g g Cpo(2, 1) =22, p, (3, 3) =1/(1+ hBi), 2
0= po ’ . /'__ i i _ i
0 0 po (3, 3) QO'_‘QO (O; 0) 0)1 x "—‘XN (0’ (er 8N)r
where ¢y and ®) are found by solving the algebraic system
h2
| ot 2= 2] et a1, 30y ==y,

Pry_1 3, 2) Py -+ [PN_I (3» d—{A+4 Bi)] ®N = qN_1 (3)
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TABLE 2. First Eigeavalue A, for the Critical R* and M* Numbers
at Various Values of the Biof Number

Bi 0 { 0,1 l 0,25 . 0,5 ! i 5 1 10 ' 100
M 1,25 1,40 1,76 2,0 2,25 2,75 3,01 3,13
R 740 840 920 1000 1100 1400 1550 1707
M —0,057 | —0,005 0,030 | 0,042 0,024 0,025 0,352 0,245

TABLE 3. Parameter R as a Function of the The problems in this article were solved for the
Wave Number M on the Neutral Line, at the parameters « = 0 and Pr = 0.7 by the implicit scheme
Value of the Injection Parameter a = 3 e =1. ’

3,65 The computer values of parameter R in the Ray-
leigh problem are shown in Table 1 for three values
of the wave number M within the critical range, with
various step h sizes in the finite-differences scheme.
The first eigenvalue Ay was reduced toward zero
(~107%), the norm of the variance for the first eigenvector was set at 6, = 107, while for the second and
third eigenvector we obtained 6 1,27 107%-107%, The initial value of vectors X% (n =1, 2, 3) for this calcu-
lation were chosen arbitrarily, and then for the other parameters R and M we chose as the initial values
the eigenvectors found for the preceding values of these parameters. This ensured the necessary accu-
racy after 1-2 iterations, while the step along the time coordinate could be chosen of any length between
0.1 and 4. In the last column of Table 1 are shown the results of an exact solution [1].

M 1 2,9 3,0 3,1 3,2 3,35 3,5

R ’ 2612 ‘ 2584 l 2565 s 2554 | 2550 ‘ 2561 i 2587

The values of parameter R in the problem with boundary conditions of the third kind were taken from
[2], as were also the corresponding values of the wave number M on the line of minimum Biot number, and
the first three corresponding eigenvalues of the problem were determined for these parameter values and
with b = 0.00625. Only the first eigenvalue is shown in Table 2. As can be seen here, A; ~ 1071-1072,

As was to be expected, the induced matrix L in these problems is a diagonal one, since the vectors
of sequence (21) have been reduced to orthogonality in the generalized sense (15), since the original matrix
A in (6) is symmetric, and since the differential operators in elements of the matrices A, B are sign-
definite.

b) The problem of hydrodynamic stability with ejection [3] was solved for the boundary conditions
(28) and the parameters @ =3, Pr =1 with e =1 and h = 0.01. The values of M and R on the neutral line
are shown in Table 3. According to the data in Table 3, the minimum value is R* = 2550 and corresponds
to M* = 3.31. Inasmuch as the characteristic dimension in [3] is one half of the characteristic length stipu-
lated here, the parameter values referred to one half of our dimension will be @ = 1.5, R* = 160, and M*
= 1.66, which agrees with the data in [3].

NOTATION
Pr is the Prandtl number;
a = wol/a is the Peclet number;
Bi is the Biot number;
AT =T~T, is the temperature difference between the lower and upper plane;
a is the thermal diffusivity;
v is the kinematic viscosity;

B =—(1/p)@p/8T)y
R = gBH*AT /av

g

H

anm (m=1, 2, 3)
pPN(n, m)

n, m

D = 8/9z—M?%;

Dy = D3D;

D, = a(8/8z) + D;

is the thermal volume expansivity;
is the Rayleigh number;

is the acceleration of free fall;

is the height of the liquid layer;

is the component of vector Qn;
are the elements of the matrix Pyj;

are the number of the row and the column, respectively (n, m =1, 2, 3);

D, =(a/Pr)(9/8z) + D.
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